پیش بینی رواناب با استفاده از مدل های هوشمند
Authors
Abstract:
پیشبینی رواناب رودخانهها بهدلیل اهمیت زیاد آن در برنامهریزیها، بهرهبرداری از مخازن و همچنین مدیریت آبهای سطحی همواره مورد توجه مسئولان، برنامهریزان و مهندسان آب و منابع آبی بوده است. از طرفی، بهدلیل تغییرات زمانی و مکانی موجود، روابط غیرخطی و عدم قطعیت و بسیاری از عوامل دیگر پیشبینی رابطۀ بارشـ رواناب بسیار مشکل است، اما امروزه استفاده از سامانههای هوشمند در پیشبینی چنین پدیدههای پیچیدهای میتواند مفید و مؤثر باشد. در این پژوهش سعی شده است با استفاده از دادههای هواشناسی و هیدرومتری طی دورۀ زمانی 1349-1350 تا 1390-1391 رواناب در حوضۀ آبخیز امامه با استفاده از مدلهای شبکۀ عصبی پرسپترون چندلایه، تابع پایۀ شعاعی و سیستم عصبی فازی تطبیقی تخمین زده شود. نتایج نشان داد از بین مدلهای یادشده سیستم عصبی فازی تطبیقی عملکرد بسیار زیادی داشته است و بهخوبی میتواند رواناب را پیشبینی کند بهطوریکه با توجه به خطاها ساختار 54 با هشت ورودی شامل بارندگی و دبی تا تأخیر دو روز و دما، تبخیر و تعرق و رطوبت نسبی همان روز که دارای تابع عضویت گوسی و جداسازی از نوع خوشهای با خطای MSE، RMSE و MAE بهترتیب 001/0، 025/0 و 008/0 در مرحلۀ آموزش و 001/0، 026/0 و 008/0 در مرحلۀ آزمایش بهعنوان بهترین مدل حوضۀ امامه بوده است.
similar resources
پیش بینی رسوب معلق با استفاده از داده های هیدرولوژیک و هیدروژئومورفیک در مدل های هوشمند
برآورد دقیق مقدار رسوبات حمل شده توسط رودخانه ها، در مدیریت منابع آب از اهمیت بسیاری برخوردار است. بنابراین شناسایی و پیشنهاد مدلهای مناسب جهت برآورد رسوب معلق از اهداف مهم تلقی میشود که استفاده از روش نوین مدلهای هوشمند از جمله شبکه عصبی مصنوعی و رگرسیون بردار پشتیبان در این زمینه تحول عظیمی وجود آورده است. یک گام مهم در مدلسازی رسوب معلق با استفاده از این مدلها، انتخاب ورودیهای مناسب میباشد، ...
full textمدل سازی بارش رواناب با استفاده از مدل های هوشمند هیبریدی
بارش-رواناب یکی از فرایندهای مهم در مطالعات منابع آب بشمار میرود. در این تحقیق فرآیند بارش-رواناب روزانه در حوضه آبریز بالیخلوچای با استفاده از ماشین بردار پشتیبان، شبکه های عصبی مصنوعی، هیبرید موجک-ماشین بردار پشتیبان و هیبرید موجک-شبکه عصبی مورد مطالعه و مقایسه قرار گرفته است. داده های بارش-رواناب روزانه در طول دوره آماری (1379-1387) برای آموزش و صحتسنجی مدل ها مورد استفاده قرار گرفت. د...
full textپیش بینی جریان آبراهه ای با استفاده از مدل های هیبریدی هوشمند در مقیاس ماهانه (مطالعه موردی: رودخانه زرین رود)
زمینه و هدف: انتخاب ورودیهای مناسب برای مدلهای هوشمند از اهمیت بسزایی برخوردار است زیرا باعث کاهش هزینه و صرفهجویی در وقت و افزایش دقت و کارایی مدلها میشود. هدف از پژوهش حاضر،کاربرد آنتروپی شانون برای انتخاب ترکیب بهینه متغیرهای ورودی در شبیه سازی دبی ماهانه توسط پارامترهای هواشناسی میباشد. روش بررسی: در این مطالعه داده های هواشناسی و سری زمانی ماهانه دب...
full textپیش بینی تراز سطح ایستابی با استفاده از سامانه های هوشمند
تخمین تراز سطح ایستابی از مسایل مهم و اساسی است که در برنامه ریزی کشاورزی، مدیریت منابع آب و تعیین نیاز آبی گیاهان بویژه در مواردی که از راهکارهای کم آبیاری بهره برده شود، دارای اهمیت فراوانی است. آگاهی از تراز سطح ایستابی می تواند در شوری و ماندابی شدن زمین وحتی زهکشی اراضی مفید باشد. در تحقیق حاضر از سامانه های هوشمند استنتاج عصبی – فازی تطبیقی، شبکه های عصبی مصنوعی و برنامه ریزی ژنتیک برای ت...
full textانتخاب مدل هوشمند برای پیش بینی جریان رواناب با استفاده از معیار پیچیدگی موجک-آنتروپی
مدل سازی و شبیه سازی فرایند بارش-رواناب از مسائل مهم هیدرولوژیکی ا ست که تاثیر بسزایی در تحلیل ، برنامه ریزی و مدیریت هرچه بهتر منابع آب دارد. به دلیل ماهیت غیر خطی و خاصیت تصادفی(stochastic) پدیده های مرتبط با بارش-رواناب، پیدا کردن مدلی که در عین سادگی بتواند خصوصیت حوضه را هم در خود بگنجاند و پاسخی مکفی و پیش بینی دقیق در اختیار قرار دهد، مورد توجه قرار گرفته است. لذا نظر به پیچیدگی فرایند ب...
15 صفحه اولمدل سازی بارش رواناب با استفاده از مدل های هوشمند هیبریدی
بارش-رواناب یکی از فرایندهای مهم در مطالعات منابع آب بشمار می رود. در این تحقیق فرآیند بارش-رواناب روزانه در حوضه آبریز بالیخ لوچای با استفاده از ماشین بردار پشتیبان، شبکه های عصبی مصنوعی، هیبرید موجک-ماشین بردار پشتیبان و هیبرید موجک-شبکه عصبی مورد مطالعه و مقایسه قرار گرفته است. داده های بارش-رواناب روزانه در طول دوره آماری (1379-1387) برای آموزش و صحت سنجی مدل ها مورد استفاده قرار گرفت. در ح...
full textMy Resources
Journal title
volume 4 issue 4
pages 955- 968
publication date 2017-12-22
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023